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STABILITY ENHANCEMENT OF FLEXIBLE STRUCTURES

BY NONLINEAR BOUNDARY-FEEDBACK CONTROL

A.V. Balakrishnan

ABSTRACT

We establish strong stability for a class of nonlinear boundary feedback
controllers using an abstract wave-equation formulation of a beam stabilization

problem arising in the control of flexible structures in space.

Paper presented at the IFIP Working Conference on "Boundary Control and
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1. 1Introduction

The problem of active feedback stabilizing flexible structures is of
recent interest especially for deployment in space [l1]. A significant feature
of this application is the need for "robust" controllers - whose design does
not require precise knowledge of system parameters -- see [2]. Although a
class of such linear stabilizing contreol laws is given in (2], it would
appear that to generate the control effort necessary, the actuators (reaction
jets, for example), would need to be nonlinear: linear for small amplitudes
but nonlinear (saturating-type) for large amplitudes.

Another feature of the space application is the uncertainty in the damping
parameters (even including the model). The strong stabilizability using
linear controllers requires controllability and this was established in [2]
neglecting damping; but the proof of controllability when damping is present
is unclear. In this paper we show that for a reasonable damping model the
robust linear controller still yields strong stability under a natural
extension of a condition involving the undamped modes used in [2]. Under the
asumption that there is nonzero natural damping, however small, we prove that
we have strong stability for a class of nonlinear feedback control laws which
are linear for small amplitudes and can saturate for large amplitudes.

We only treat the abstract wave-equation version of the problem: the
reduction of the physical model (biharmonic beam equations with delta-function
controls) to the abstract form is given in [3]. We only note here one feature
of the problem: the differential operators do not involve any "boundary

conditions": and although the control is exerted on the boundary, the formula-

tion does not fall into the class of boundary-control problems treated by

]




Lasiecka and Triggiani [4] so that in particular the results therein are not
directly applicable.

Finally we note that our results may be regarded as an extension of
the Benchimol-Slemrod result [5] (see Levan [ 6] for a recent treatment) to
a class of nonlinear controllers but without invoking controllability -- albeit
in a particular case. Our proof, although totally elementary, relies heavily
on the eigenfunction decomposition of the generator. The problem statement

and the main results are in Section 2.

2. General Results

Let H denote a separable Hilbert space and let us consider the follow-
ing canonical abstract differential equation characterizing the response

x(t) of a flexible structure to the applied input uft):
MX(t) + Dx(t) + Ax(t) + Bu(t) = 0 (2.1)

where M 1is a self-adjoint positive definite (zero is in the resolvent spec-
trum) linear bounded operator mapping H into H;

A 1is a self-adjoint nonnegative definite closed linear operator with
dense domain and with compact resolvent; we shall (for simplicity) also
assume that zero is in the resolvent set.

D 1is a self-adjoint nonnegative definite closed linear operator whose
domain includes that of /X; and

. - . . . . mo
B 1is a finite-dimensional linear operator mapping R into H.
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’ The next step is to introduce the "energy norm" space, which we shall
?
s denote by HE' On the product space ‘
;
]
: DAY x H (2.2)
, we can introduce the "energy" inner product:
&
:’ Y,z = [YVAy , YAz ] + [My,, z.,] (2.3)
i ) 1 1 2" %2
1 where
,‘1
|
: y z
) y = |71 ; z = | 1 (2.4)
D Y2 %2
¢
Pt and complete the space in this inner product to yield HE' To avoid confu-
;: sion we shall use a subscript E to denote the inner product in HE' Let
%)
A A denote the operator
K 0 I
b A = (2.5)
" -« 1a  -v1p
with domain:
4 v,| vy = D@
DA = = : . 2.6
2 2 l
8
] \
h We shall now show that A is closed.
¥
J |
I‘ ,
. y y |
{ Lol oy enih) Y » Y = 1
K n n y
( Y2,n 2
\
)
z z
l'n = VA = A'x' H Z hd Z = >
2 n n n 2
\ 2,n 2
[}
)
)
[}
.
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where

v ‘5‘ =
z Y2,n (2.7)

X
=
N

|

-Ayl,n - Dy2,n (2.8)
K} and

iy 2 2
1 Iz - zlg = 1A -zp1% + (mzy -z), (2, -2))

1,n 2,n

Since (YA) has a bounded inverse, it follows that

o converges. But by (2.7)

N so that

{y2,n} and {(Vva y, }

el are Cauchy. Now since domain of D includes that of va

p(/a)?t
is linear bounded, and hence
-1
o = YA) (/A
X Dy2'n D(Vva) (VA y2,n)
h converges. Since the left side of (2.8) is Cauchy, this implies that

{Ayl,n}

N is Cauchy, and of course (yl n} is Cauchy. Hence we see that A is closed.
’

Since
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with same domain as A, and for Y in D(A):

[Ay, Y]E + [Avy, Y]E = -2[Dy2, y2] (2.9)
where
y
Y = 1
Yy

we see that A and A* are dissipative, and hence [7) A generates a
strongly continuous contraction semigroup which we shall denote S(t),

t 2 0. Let AO denote the "undamped" generator:

0 I ]
A =
0 - 1a o |
with domain
Yy
= Y'Y: ,yGD(A)
¥y 1
2
Let
0 0
D =
o wMIp

We note that XA > 0 belongs to the resolvent of AO and that R(A,Ao)

is compact. From the easily verified resolvent equation:

Rex, Ay = R, AO) (I + DR()A,A)] (2.10)

it follows that R(},A) is compact, since DR(X,A) is bounded.
Rewriting (2.1) as

Y(t) = AY(t) + Bu(t) (2.11)

—~ - - i -

DL O O ) &
I "’9."f’v"?e"’o"&"’"?‘?u"t"'g"‘* .



where
x(t)
Y(t) =
x(t)
0
Bu =
-Mlpy

we see that (2.11) has the "mild" solution:

t
v{t) = s(t) ¥(0) + [ s(t-0) Bu(o) do (2.12)
0

Let Sy(-) denote the semigroup generated by AO' Let {¢k} denote

the eigenvectors of

-1 2
M A ¢k = wk ¢k
orthonormalized so that
k
(M ]o= &)
¢k, ¢J 5

and such that w,  ~are monotone increasing. Note that these are the undamped

or "natural" modes.

We shall say that a (time-invariant) "feedback" control
u(t) = K(Y(t)) (2.13)

where K(-) maps H_ into R", "stabilizes" the system (2.11) if

t
Y(t) = S(t)Y(0) + [ s(t-0) Bk(¥(0)) do
0

has a unique strongly continuous solution such that it is globally stable.

That is to say

04 : G0 MR A T T O
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“Y(t)“E - 0 as t + o

Y for every initial Y(0).
We begin with linear controllers.

gt THEOREM 2.1. Suppose

o (¢, (D+BB*)¢, 1 # O (2.14)
for every k. Then the linear feedback control
e u(t) = -PB*v(t) (2.15)

where P 1is positive definite and has a bounded inverse, yields global

asymptotic stability.

T Conversely, (2.14) is necessary if these controls are to yield global

stability.

bt
5‘ Proof. To begin with we assume that the strong version of (2.11) is
A
5’ satisfied:

1

\

B MX(t) + Dx(t) + Ax(t) + Bu(t) = 0 . (2.16)

,>~ Let

#

E(t) nY(t)ﬂg

-
-
N

L (Aaxi), vAxin)] + MX(t), %x(t))) . (2.17)

&
¥
|

i Then

:.':: dit E(t) -(DX(t), %(8)] = [%(t), Bu(t)] (2.18)

-
1]

-{(D + A{t)BB*)x(t), x(t)] (2.19)

where

A(r) = Jult), B*x(t)]

(2.20)
IB*x(t) |I2

'y = 0 if |B*x(t))] =0

. , " oy
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From (2.18) we obtain that

E(t) 1is monotone nonincreasing in t

and that

o [ ]

E(0) - E(») = [ [Dx(t), x(t)]dt + [ A(t)[B*x(t), B*x(t)] dt . (2.21)
0 0

Hence if we consider first the choice

u(t) = B*x(t) (2.22)
or equivalently
Alt) = 1
we have correspondingly
o <«
J (bx(t), xt)1 at + [ [B*x(t), B*x(t)]dt = E(0) - E(®) < o .
Q Q
(2.23)

To prove global stability, it is enough to show that
E(®») = 0

in (2.21), or in (2.23). Next let

a, (t) = [x(t), M¢k]

so that we have the "modal" expansion:

cie) o= ) a, (t) ¢, (2.24)
1
and
B = 27 lam?eam?) (2.25)
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Using this expansion in (2.16) we have

. 2 . .
ak(t) + wkak(t) = =-[Dx(t), ¢k] - [B*x(t), B*¢k] (2.26)
or,
- . 2 -
d () + {{D¢k.¢k1 + [B"tbk,B*d)k]}ak(t) *owalt) = £, () (2.27)
where
£ (0) = (Dk(t), 6.1 - ék(t) (D¢, . 6,1 + [B*fc(t),B*(bk]

- 3 * *
ak(t)[B ¢k,B ¢k]
Suppose now that for some k:

D¢ = 0 ; B*¢ = 0
Then

x(t) = ak(t)¢k

is a solution of (2.17), provided only that

. 2 .
ak(t) oW ak(t; = 0
and hence |ak(t)| does not go to zero as t * ®; this takes care of the

necessity condition. Assume then that

20k = [D¢k, @k] + [B*Qk, B*¢k]

is nonzero. Then (2.27) can be "solved" to yield (assuming small damping

for simplicity):

-0, t -g,.t Ssin A t
= k + k *k
ak(t) a e cos ka + bk e y
k
t
- f W(t-s) f (s) ds (2.28)
0 k

: . - . . PR
OGO ACAORAEIGOUMON) a1 Ty Vo Ay CRIONS AN s D) : ;
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R where

) -0 t

< e k" sin Akt

S wit) = —mm—
Y

A (~g, £+ 31X ) are the roots of

i
I
(@]

52 + 20, s + Ww
k

L 2s
eSS
N

Now because:

(DX (t), ¢k1|2 S [Dk(t), %(t)] (Do, 6]

it follows from (2.23) that

,l{l“t,‘.,'.}("¥

-

«©

[ |tox(vy, ¢le2 dt <
0

.."'
.'
a

o ¢
'R

¢
.

A
¥
]' -l

Hence a little analysis shows that

-
h
[ 2

t
[ w(t-s) (Dk(s), ¢
0

K
: 7

k]<:1s<>0 as t * ®

g
Fy
&

0

By a similar reasoning, also

7 K

t

[ W(t-s) [B*%(s), B*¢ ] ds > O
0 k as t > @

2

i

LS

~r,

.Al‘l'. "‘.

Hence it follows that

d

&

A
ot

e(t) = a () - 20, [ wit-s) & _(s) ds (2.29)

LA
x

. -

where

e(e) » O as t * ®

Col PR

" €(t) = a (t) + a(0)wW(t) + 20 [ W(t-0) a (o) do

Mot (0N
P

1 . “ ot .
MO0 0 ~ 2 A7 ‘ , Bl . Rk XY A 70 i \ 1 ASOO000N
SRR 5 TSSO A WA NACAIAYIRATRRE | Rl e
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. Hence
t

2'%' a (t) + 20, [ W(t-0) a (o) do = B(t) (2.30)
k K X

AN\ 0

hb where

g(t) =+ O as t *+*®

R Solving (2.30) (using elementary Laplace transform techniques) we obtain

» that

-> 0 + © .
ak(t) as t
)
!
;‘{ Differentiating (2.28) and proceeding in a similar way we can also show that

ék(t) + 0 as t +®

Let

- 4‘ - -
2 NG
S

+
1]
g
~

n Then

e lim (Y(t), ] = lim [¥(t), ¢] = 0
; X K
[\ t>x £+

. for each k, which is enough to imply that Y(t) converges weakly to zero.
Next we note that

s Y(t) = SB(t) Y (0)

J$. where SB(t) is the (strongly continuous contraction) semigroup generated
1

" by
O A - BB»

R N R S Ry
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which has a compact resolvent. Hence weak stability implies strong
stability [7]:

"Y(t)“E = "SB(t) y(O)llE - 0. (2.31)

In particular we have (2.23) that

lv@12 = [ xo, ko)) ac + [ erxce)]? ae
0 0
or,
HY(O)“E = [ (pY(v), Y(t)], dc + / I8*y(t) % at . (2.32)
0 0

Finally given any arbitrary initial condition Y(0), we can find an
approximating sequence {Yn(O)} in the domain of A such that (2.31) holds
for the corresponding solution Yn(t): and the result follows from the
estimate:

; i i _
fvcerly = Isgie) Yy 0y, + ¥ (o) -v@f .

REMARK 1. We note that if D = 0, our condition (2.14) is equivalent to
regquiring (A ~B) controllability (see (2]). Hence we would have strong
stability by a more general argument due to Benchimol [(5]. If B = 0, then
condition (2.14) implies that D¢k # 0 for any k, and we are then proving

strong stability for the semigroup S(t).

Nonlinear Controllers

Let us now go on to consider a class of nonlinear controllers. Thus

we shall consider where K(-) in (2.13) is given by

, . - . r - ﬂ !
it y : ' HMOG S0
ARANCN RS ,'\‘.';.q! SR LA ‘»"*"":l"‘:i.": f,'\‘.h‘,h',.'a',h'.‘ LRI MR MR -'}a‘,’n',.‘-f.‘u',.*nﬂ'af,‘l 8 P WM B ACRM ML ORISR
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K(y) = f(B*yz)
where
Y
Y = L ’
Y)

and £(+) maps R"  into Rm, and satisfies the following conditions:
i) [f(u), ul >0 for u #0
i1)  JEw ] s Al
iii) f£(+) is Lipschitz.

A typical example of f£f(+) |is

f(u) = v ; u = {u.} ; v
i

{v.}
1

THEOREM 2.2. Suppose

[D¢k. ¢k] # O

for every k. Then the feedback control

ult) = =B* £(B*x(t))
where
x(t)
Y{t) =
x(t)

vields asymptotic global stabh:lity.

Proof. Under condition (2..14:', the semigroup §(°) generated by A

O () u QO DA,
AN s gl e e he G

(2.14a)

(2.33)

»

0y
o
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in HE is strongly stable. By virtue of the Lipschitz conditions on £(°),

existence and uniqueness of solution for each t > 0 is immediate, and the

solution is given by:

t
Y(t) = S(t) ¥Y(0) + [ sS(t-0) Bf(B*k(0)) do, 0<t. (2.34)
0
Next we shall show that
(-] . 2
J leB*x@) | do < = . (2.35)
0

For this purpose let us assume first that the initial condition Y(0) 1is in

the domairn of the generator A, so that we have

MX(t) + Dx{(t) + Bf(B*kx(t)) + Ax(t) = O

Defining the energy again as

E(e) = 3 v
we have that
E(t) = -[Dx(t), %x(t)] =~ [B(t), £(b(t))]
where
b(t) = B*x(t)
Since

(b(t), £(b(t))) 2 0,

we have that:

[ [Dx(t), %x(t)] dt < = !
° 1
l,"’ ‘
¥
l€: !
'y ‘
l';"

4

»
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1%

A

)

"

i
s and since we can write

. -1

. (/D) " (VDx(t)) = %(t)

-,

y it follows that

"} o ,

[lx) ] at < = .

4 °

o

:é But this implies that

B - ,

[ Ie*x(t)|“ at < =

5 0

L]

': and hence also

Lr, @ 5

K [ le@E*en]? at <

4 0

¢

) by virtue of our assumptions on f(-).

[}

{ We now proceed as in the proof of the preceding theorem. Writing
i}

. )

g 20k = [D¢k, ¢k]

S we have:

A

2 .. 2 20 & » 36

ak(t) + wkak(t) + Okak(t) = -fk(t) (2.36)

& where ak(t) is as before, and

v

N - Y - 3 * 3 *
! fk(t) [Dx(t), ¢k] ak(t)[Dék, ¢k] + [f(B*x(t)), B ¢k]
é since

% [+ <] . 2 x . 2

b [ tok(e), 6,17 ac + [ [£(B*k(t)), B* 1" at < =,
: 0 0

4
g as before, we obtain

t

¢ e(t) = a (t) + al0)w(t) + 2ok£w(t-0)ak(o) do
4

1)

,.

K,

" ._‘..,.
o)

oK

L O]
.~.v RN AR Y, b

OHORY . l o ( () p‘
t.. l. i ,h ,ik 'B~¢;$i.; “Is‘ﬁl' ';“ B t‘g " l“ b i‘t Of) AN n“,, A.g o I" ) “l.g‘

0.0
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A,
)
(
s
I |
O where €(t) * 0 as t + ® and the rest of the arguments follow. Hence
2
K)
w, a, (t) + O as t + =
A k
0‘
wh ék(t) - 0 as t -+ @ ]
Ny
$ for each k. Hence it follows that |
4%
¥
;v Ax(t) = 0 |
’ |
5 Ax(t) = O . ‘
0 . -1 . i
h Since A is compact, it follows that x(t) converges strongly to zero

(in H). Similarly

» AX(t) -~ ©
.
: implies that %x(t) converges strongy to zero {(in H). Hence Y(t) converges

weakly (in HE) to zero. Now

.-P
Y . _ . i
"‘ [Dx(t)r ¢k] = [x(t)r D¢k] !
. . .
4 implies that
A Dx(t) —= 0
a4
:& Hence
"
Ay(t) = 0.
W
D )
k since A has a compact resolvent it follows that Y(t) converges strongly
N
&
y (In HE) to zero.
is
e Next we relax our assumption regarding the initial condition Y(O0).
R)
"
o4 We begin by proving Lipschitz continuity of the solution with respect to
'
oy
ﬂ: the initial condition. Thus let Y(t) denote the solution with initial

N condition Y(0) and let

)

+
e
i

. -~ : oy, 00 RSO ERX] 0 0 . o K A (X 4y
s A T T e R R R R R e



T S T WY W YW gy YR VT MW W W YT W T W O W W W RV W W WOUNW O W W W s TR TS oW T o TR e - ._1

“ - 17 -

! e et

Y(t) = M(t)(Y(0))

LTI P e

Then let YﬁO),YéO)G HE and

M(t)(YZ(O)) - M(t)(Yl(O)) SD(t)(Yz(O) - Yl(O))

t

+ f SD(t-o)(Bf(B*Yéc)) - Bf(B*on))] do .
0

- . -

Let

: m(t) "Yz(t) - Yl(t)"E .

Then in view of our assumptions on f(°), we have

. t
~ m(t) S m(0) + y[ m(o) do ; Y
0

[\
o

8 and hence by the usual analysis

m(t) S e'% m

yielding Lipschitz continuity. The continuity vyields in turn

: 2 i 2 t
Yo = 2E(t) = [y(o)lg - [ [DX(s), k(s)) ds
0

E

! t - -

[ - [ (bts), £(B(s))] ds
L 0

and hence we obtain:

o0 oo

e / Ipx(t) {2 dt + [ (B(t), £(B(E))] dt < = .
N 0 0

.
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- Next we need to establish (2.36). But this follows readily from the fact
o (2.11) holds in the weak sense. Hence we obtain that Y(t) converges

strongly to zero in HE for any initial Y(0) in H

B
REMARK. It would be of interest to establish strong stability under the
d weaker condition (2.14). We note that the condition (2.14) is again obviously

N necessary.
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